Intrinsic Plagiarism Detection 2011
Synopsis
- Task: Given a set of suspicious documents, the task is to extract all plagiarized passages without comparing them to potential source documents.
- Input: [data]
- Evaluator: [code]
Award
We are happy to announce the following overall winner of the 1st International Competition on Plagiarism Detection who will be awarded 500,- Euro sponsored by Yahoo! Research:
- Task winner of the intrinsic analysis task, and overall winner, are Gabriel Oberreuter, Gaston L'Huillier, Sebastian Rios and Juan Velasquez from the University of Chile.
Congratulations!
Input
To develop your approach, we provide you with a training corpus which comprises a set of suspicious documents, each of which may contain plagiarized passages.
Output
For each suspicious document suspicious-documentXYZ.txt
found in the evaluation
corpora, your plagiarism detector shall output an XML file suspicious-documentXYZ.xml
which contains
meta information about all plagiarism cases detected within:
<document reference="suspicious-documentXYZ.txt"> <feature name="detected-plagiarism" this_offset="5" this_length="1000" /> ... </document>
The XML documents must be valid with respect to the XML schema found here.
Evaluation
Performance will be measured using macro-averaged precision and recall, granularity, and the plagdet score, which is a combination of the first three measures. For your convenience, we provide a reference implementation of the measures written in Python.
Results
Intrinsic Plagiarism Detection Performance | |
---|---|
Plagdet | Participant |
0.3255 | G. Oberreuter Universidad de Chile, Chile |
0.1680 | M. Kestemont, K. Luyckx, and W. Daelemans University of Antwerp, Belgium |
0.0841 | N. Akiva Bar Ilan University, Israel |
0.0694 | S. Rao, P. Gupta, K. Singhal, and P. Majumder DA-IICT, India |
A more detailed analysis of the detection performances with respect to precision, recall, and granularity can be found in the overview paper accompanying this task.