Author Verification: Basic Stacked Generalization Applied To Predictions from a Set of Heterogeneous Learners

Erwan Moreau, Arun Jayapal, Gerard Lynch and Carl Vogel

CNGL & Trinity College Dublin

moreaue@cs.tcd.ie, jayapala@cs.tcd.ie, gerard.lynch@ucd.ie, vogel@cs.tcd.ie

This research is supported by Science Foundation Ireland (Grant 12/CE/I2267) as part of the Centre for Next Generation Localisation (www.cngl.ie) funding at Trinity College, University of Dublin.

PAN 2015
Approach

- Regression problem (at the dataset level)
 - one instance = one problem (known docs + unknown doc)
 - optimize $\text{AUC} \times c@1$

- Combining multiple learners

- Genetic algorithm used to:
 - train the individual learners,
 - train the meta-model.
Experience from PAN’2014:

- Genetic algorithm: tends to overfit
- Two approaches:
 - Fine-grained: many parameters to maximize performance
 - Robust: basic approach to avoid overfitting
 → strategy chosen manually by dataset

Results obtained by the organizers meta-model:

![ROC graphs](image.png)

Fig. 1. ROC graphs of the best performing submissions and their convex hull, the baseline method, and the meta-classifier.
Strategies

1. Fine-grained strategy: many parameters, maximize performance
2. Robust strategy: basic approach, safer
3. General Impostor
 ▶ Idea: meta-comparison against third-party documents
 ▶ Used by best system at PAN’14
4. Topic modelling
 ▶ Modified for style distinctiveness
 ▶ Goal = Complementarity
5. Universum Inference
 ▶ Bootstrapping method
 ▶ Homogeneity of documents snippets mixed together
Configurations

- Representing distinct set of parameters in an homogeneous way
- Set of key-value pairs: \(C = \{ p_1 \mapsto v_1, \ldots, p_n \mapsto v_n \} \)
- Describe the meta-parameters of a strategy
 - In training mode, a configuration \(C \) and a set of instances (problems) \(S \) define a model \(M \) in a unique way:
 \[
 f_{\text{train}}(C, S) = M
 \]
 - In testing mode, a configuration \(C \), a model \(M \) and an instance \(s \) define a unique prediction:
 \[
 f_{\text{test}}(C, M, s) = p
 \]
- Specific set of parameters for each strategy
- Very large space of possible configs
Common to all strategies

- Low-level features: various kinds of n-grams
 - words, letters, POS tags, skip-grams...
- Output of the strategy: a set of indicators (high-level features)
- Regression algorithm \rightarrow score in $[0,1]$
 - SVM regression, Decision trees regression
- Optional: classification to try to detect ambiguous cases
 - Uses indicators + predicted score
 - Optimize C@5 score
Genetic Algorithm

- A *multi-configuration* associates multiple values to one parameter:
 \[
 MC = \{ p_1 \mapsto \{ v_1^1, \ldots, v_{m_1}^1 \}, \ldots, p_n \mapsto \{ v_1^n, \ldots, v_{m_n}^n \} \}
 \]

- 1 configuration = 1 “individual”
- Multi-configuration = space of all combinations = input

- Basic genetic process:
 - first generation initialized randomly
 - Then selection based on previous generation performance
 - Possibility of mutation.
 - Selects a subset of optimal configurations for each strategy
Architecture

Strategy learning process

Generation 1

strategy training set

strategy 1

strategy 2

strategy 3

strategy 4

strategy 5

N configs

N configs

N configs

N configs

N configs

random configs

evaluation + genetic selection

selected configs

evaluation + genetic selection

stop criterion: no more perf improvement

N best configs

Meta learning process

meta multi-config:
 - which strategy predictions
 - how to combine the predictions

meta-model

random configs

evaluation + genetic selection

selected configs

evaluation + genetic selection

stop criterion: no more perf improvement

meta training set
ML Setting

Risk = overfitting

- Genetic process: inner k-fold CV
 - New k-partitioning at every generation
- Chained sequences with k increased
- Final 10 × 2 CV
 - Control the influence of k-partitioning

Hybrid setup

- Training set split into:
 - Strategy training: 50% instances
 - Meta-stage training: 25%
 - Meta test set: 25%

+ Final eval with bagging
+ Overall 2-fold CV
Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Meta test set</th>
<th>Full training set</th>
<th>Test set perf.</th>
<th>rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutch</td>
<td>0.710</td>
<td>0.722</td>
<td>0.635</td>
<td>1st</td>
</tr>
<tr>
<td>English</td>
<td>0.405</td>
<td>0.421</td>
<td>0.453</td>
<td>6th</td>
</tr>
<tr>
<td>Greek</td>
<td>0.656</td>
<td>0.761</td>
<td>0.693</td>
<td>2nd</td>
</tr>
<tr>
<td>Spanish</td>
<td>0.950</td>
<td>0.952</td>
<td>0.661</td>
<td>4th</td>
</tr>
<tr>
<td>Macro-average</td>
<td></td>
<td></td>
<td>0.610</td>
<td>2nd</td>
</tr>
</tbody>
</table>

- **Influence of the size of the sample**
 - English: only one known doc by case
 - Spanish: four known docs by case

- **Similar perf on training and test set**
 - no overfitting *(except with Spanish)*
Conclusion and future work

- Combining heterogeneous learners works well
- Works better with more information
- Selecting learners based on diversity?
- In progress: making the code available