Authorship identification in large email collections: Experiments using features that belong to different linguistic levels

George K. Mikros & Kostas Perifanos
National and Kapodistrian
University of Athens
Style

- Our approach to authorship identification is based mainly on the idea that an author’s style is a complex multifaceted phenomenon affecting the whole spectrum of his/her linguistic production.
- Following the old theoretical notion of “double articulation” of the Prague School of Linguistics we accept that stylistic information is constructed in parallel blocks of increasing semantic load, from character n-grams, to word n-grams.
- In order to capture the multilevel manifestation of stylistic traits we should detect these features, which belong to many different linguistic levels, and utterly combine them for achieving the most accurate representation of an author’s style.
An hierarchical representation of features and related linguistic levels

Word trigrams
Word bigrams
Word unigrams
Character trigrams
Character bigrams

Semantics
Syntax
Morphology
Phonology
Features

1000 most frequent n-grams from the following feature groups:

- **Character Bigrams (cbg):** Character n-grams provide a robust indicator of authorship and many studies have confirmed their superiority in large datasets.

- **Character Trigrams (ctg):** Character trigrams capture significant amount of stylistic information and have the additional merit that they also represent common email acronyms like FYI, FAQ, BTW, etc.

- **Word Unigrams (ung):** Word frequency is considered among the oldest and most reliable indicators of authorship outperforming sometimes even the n-gram features.

- **Word Bigrams (wbg):** Word bigrams have long been used in authorship attribution with success.

- **Word Trigrams (wtg):** Word trigrams have also been found to convey useful stylistic information since they approach more closely the syntactic structure of the document.
Algorithms and Datasets

- Large and Small Datasets (Authorship Attribution scenario)
 - L2 Regularized Logistic Regression (Authorship Attribution tasks)
- Large and Small + Datasets (Combined Authorship Attribution and Verification scenario)
 - One-Class SVM and L2 Regularized Logistic Regression
- Verify 1, 2 & 3 Datasets (Pure Author Verification)
 - One-Class SVM (Authorship Verification tasks) using only the 2000 most frequent character bigrams.
Results in Large Train Dataset
F₁ in Large Test Dataset

<table>
<thead>
<tr>
<th>Team</th>
<th>F₁ Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>kourtis</td>
<td>0.658</td>
</tr>
<tr>
<td>zechno</td>
<td>0.642</td>
</tr>
<tr>
<td>tanguy</td>
<td>0.594</td>
</tr>
<tr>
<td>tanguy</td>
<td>0.594</td>
</tr>
<tr>
<td>spider</td>
<td>0.571</td>
</tr>
<tr>
<td>mikros</td>
<td>0.519</td>
</tr>
<tr>
<td>hrycky</td>
<td>0.522</td>
</tr>
<tr>
<td>escalante</td>
<td>0.508</td>
</tr>
<tr>
<td>hrycky</td>
<td>0.5</td>
</tr>
<tr>
<td>vilarino</td>
<td>0.428</td>
</tr>
<tr>
<td>vilarino</td>
<td>0.238</td>
</tr>
<tr>
<td>ryan</td>
<td>0.255</td>
</tr>
<tr>
<td>eriksson</td>
<td>0.221</td>
</tr>
<tr>
<td>vilarino</td>
<td>0.219</td>
</tr>
<tr>
<td>solorio</td>
<td>0.148</td>
</tr>
<tr>
<td>noeker</td>
<td>0.035</td>
</tr>
<tr>
<td>ghooch</td>
<td>0.055</td>
</tr>
<tr>
<td>noeker</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Results in Small Train Dataset
F_1 in Small Test Dataset
Procedure in Large & Small + Datasets

- Dataset with Unknown Authors
- Dataset with Known Authors

- Unknown Authors
- Known Authors

One-Class SVM

L2 Regularized Logistic Regression

Unknown Author
- Author 1
- Author 2
- Author 3
- Author ...
- Author n
F_1 in Large & Small +

Large+

- tanguy: 0.587
- zechner: 0.492
- escalante: 0.518
- vilarino: 0.451
- mikros: 0.416
- vilarino: 0.368
- ryan: 0.369
- eriksson: 0.222
- vilarino: 0.216
- noecker: 0.201
- noecker: 0.175

Small+

- tanguy: 0.588
- escalante: 0.575
- vilarino: 0.527
- mikros: 0.349
- vilarino: 0.377
- ryan: 0.303
- eriksson: 0.331
- vilarino: 0.173
- noecker: 0.254
- vilarino: 0.254
- noecker: 0.065
Results in Verification datasets

<table>
<thead>
<tr>
<th>Verify1</th>
<th>Verify2</th>
<th>Verify3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision</td>
<td>Recall</td>
<td>Precision</td>
</tr>
<tr>
<td>0.125</td>
<td>0.667</td>
<td>0.035</td>
</tr>
</tbody>
</table>
Conclusions

• Features spanning in multiple linguistic levels capture better author’s stylistic variation than features that focus in a specific level.
• L2 Regularized Logistic Regression performs very well in high dimensional data.
• Authorship verification research remains a difficult problem and research should be focused to new algorithms handling one-class problems.
• We need one / many common benchmark corpus/corpora in order to further advance authorship identification tools and methods.