A Slightly-modified GI Author-verifier with Lots of Features (ASGALF)

Mahmoud Khonji, Youssef Iraqi
{mkhonji, youssef.iraqi}@ku.ac.ae

Khalifa University, UAE
Outline

• General Impostors (quick intro; our imp.)
• Score aggregation.
• Features.
• Parameter tuning.
• Stuff that are possibly limitations of our classifier.
GI (quick intro reflecting our imp.)

score = 0

\[
general_impostors(knowns, unknown): \]

\[
\quad n = |knowns| \\
\quad \text{forall } known \text{ in } knowns: \\
\quad \quad \text{score } += \frac{impostors(known, unknown)}{n}
\]

if score > threshold:
 return “same”
else
 return “notsame”
impostors(*known, unknown*):
 score2 = 0
 for 1 ... runs_num:
 imps = get_imps_rnd(lang-genre-docs, n)
 fs = get_fs_rnd(features, f)
 best_imp_to_known
 best_imp_to_unknown
 forall imp in imps:
 sim_k = \text{sim}(imp, known)
 sim_u = \text{sim}(imp, uknown)
 best_imp_to_known = imp if higher sim
 best_imp_to_unknown = imp if higher sim
if $\text{sim}(\text{known}, \text{unknown})^2 > \text{sim}(\text{sim}_k, \text{known}) \times \text{sim}(\text{sim}_u, \text{unknown})$:
 score2 += 1/\text{runs}_\text{num}

return score2
Score aggregation

Instead of:
\[
\text{if } x > y:\ \\
\quad score2 += 1/\text{runs_num}
\]

We did:
\[
\text{score2} += x/y
\]
Features

All n-grams that have occurred at least 5 times in any document.

$n \in \{1, \ldots, 10\}$

gram $\in \{\text{letters, words, words_function, words_shape, words_post, words_post_word}\}$
Features examples

words_functions:
If x, y, and z are function words in “x y z ...”, then a 2-gram would be \{x:y, y:z\}.

words_post:
“saw the saw” would become “VBD DT NN”, then a 2-gram set would be \{VBD:DT, DT:NN\}

words_post-word:
“saw the saw” would become “saw-VBD the-DT saw-NN”, then a 2-gram set would be \{saw-VBD:the-DT, the-DT:saw-NN\}
Parameter tuning

Assuming $threshold = 0.5$, apply a correction to the score to maximize accuracy.

First, find optimal $threshold$ (exhaustively). One that maximizes accuracy on training set.

Then, $correction = 0.5 - threshold$.
Stuff that are possibly limitations

• Not fully taking advantage of C@1.
• Parameters are not found rigorously (a few manual trials).
• Using min-max might not show some interesting patterns.
• Being too-spoiled by impostors robustness against noisy features (using too many features slowed our implementation while possibly not adding much value)
• The usual things: clumsy code.
Acknowledgement

Thanks to Shachar Seidman for answering our questions about GI.
Thank you