INTRINSIC PLAGIARISM DETECTION USING CHARACTER TRIGRAM DISTANCE SCORES

UNDER A NOVEL DOCUMENT REPRESENTATION
PLAGIARISM DETECTION

- External detection:
 - reference corpus = ALL source documents
 - ‘Closed’ world
- **Realistic?**
 - Growing potential reference collection (cf. web)
 - Computationally complex!
 - Not all sources digitally/publicly available
 - E.g. student hiring ghost writer for sections in master thesis: what if ghost writer himself did not plagiarize?
- Practically **relevant**
• Limited resources
• Only document itself...
• Seminal work: standard methodology

“The underlying approach to intrinsic plagiarism detection has not changed: a suspicious document d is chunked, and [...] each chunk is compared with the whole of d. Then, chunks whose writing style differs significantly from the average writing style of the document are identified using outlier detection.” (PAN overview 2010)

• (Negative undertone?)
Segments, chunks, windows, …

Suspicious document

- Window size
 - Step size
 - \(W_1 \)
 - \(W_2 \)
 - \(W_3 \)
D vs. $w_1, w_2, w_3, \ldots, w_n$

Entire suspicious document D

$\Delta(D, w_i)$

W_1 W_2 W_3 W_4
IMPLICIT ASSUMPTIONS?

1 – “It’s okay to compare a chunk to the document as a whole.”

2 – “The whole document is a reliable point of stylistic reference.”
COMMON PRACTICE?

Equal size

Different size
1 – “It’s okay to compare a chunk to the document as a whole.”

2 – “The whole document is a reliable point of stylistic reference.”
WORST-CASE SCENARIOS

Original text will be marked as plagiarized?

Which one is the original author?
QUESTIONABLE ASSUMPTIONS

1. “It’s ok to compare a chunk to the document as a whole”
2. “Whole document is reliable point of stylistic reference”

But is there an alternative?
WINDOW VS. WINDOW

• Instead of Document vs. Window...
• Window versus Window
 • No assumption of reliability of D as a whole
 • Comparing blocks of equal size
SYMMETRICAL DISTANCE MATRIX

Cf. Distance tables for clustering

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
<th>...</th>
<th>w_{n-1}</th>
<th>w_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1</td>
<td>0</td>
<td>$\Delta(w_1,w_2)$</td>
<td>...</td>
<td>$\Delta(w_1,w_{n-1})$</td>
<td>$\Delta(w_1,w_n)$</td>
</tr>
<tr>
<td>w_2</td>
<td>$\Delta(w_1,w_2)$</td>
<td>0</td>
<td>...</td>
<td>$\Delta(w_2,w_{n-1})$</td>
<td>$\Delta(w_2,w_n)$</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>w_{n-1}</td>
<td>$\Delta(w_{n-1},w_1)$</td>
<td>$\Delta(w_{n-1},w_2)$</td>
<td>...</td>
<td>0</td>
<td>$\Delta(w_{n-1},w_n)$</td>
</tr>
<tr>
<td>w_n</td>
<td>$\Delta(w_n,w_1)$</td>
<td>$\Delta(w_n,w_2)$</td>
<td>...</td>
<td>$\Delta(w_n,w_{n-1})$</td>
<td>0</td>
</tr>
</tbody>
</table>
CLUSTERING OF PLAGIARISMS OF SAME SOURCE
DISTANCE MEASURE

- Stamatatos’s normalized distance
- Distance between two ‘text profiles’
- Profile = bag-of-character-trigrams

\[
\sum_{g \in P(w_x)} \frac{\left(\frac{2(f_{w_x}(g) - f_{w_y}(g))}{f_{w_x}(g) + f_{w_y}(g)} \right)^2}{4|P(w_x)|}
\]
SYMMETRIC ADAPTATION

- Originally: all trigrams from 1 document
- Asymmetrical: distance(A,B) != distance(B,A)
- Adaptation: restrict to $n=1000$ most frequent character trigrams from entire corpus
- Stylometric inspiration
- Computationally simple: symmetry!

\[
\begin{array}{cccccc}
 & w_1 & w_2 & \ldots & w_{n-1} & w_n \\
w_1 & 0 & \Delta(w_1,w_2) & \ldots & \Delta(w_1,w_{n-1}) & \Delta(w_1,w_n) \\
w_2 & & 0 & \ldots & \Delta(w_2,w_{n-1}) & \Delta(w_2,w_n) \\
\vdots & & & \ddots & \ldots & \ddots \\
w_{n-1} & & & & 0 & \Delta(w_{n-1},w_n) \\
w_n & & & & & 0 \\
\end{array}
\]
OUTLIERS?

• Distance table (cf. clustering)
• Multivariate, higher-dimensional
• Mvoutlier (R, Filzmoser et al.)
• Principal Components Analysis
• Reduces dimensionality before detection
The smaller the windows, the better (but more expensive)

<table>
<thead>
<tr>
<th>ws</th>
<th>ss</th>
<th>plagdet recall</th>
<th>precision</th>
<th>granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,000</td>
<td>20,000</td>
<td>19.48</td>
<td>20.02</td>
<td>19.01</td>
</tr>
<tr>
<td>20,000</td>
<td>15,000</td>
<td>20.59</td>
<td>21.84</td>
<td>19.88</td>
</tr>
<tr>
<td>20,000</td>
<td>10,000</td>
<td>23.80</td>
<td>27.79</td>
<td>21.00</td>
</tr>
<tr>
<td>20,000</td>
<td>5,000</td>
<td>25.84</td>
<td>39.55</td>
<td>19.52</td>
</tr>
<tr>
<td>20,000</td>
<td>1,000</td>
<td>26.36</td>
<td>44.99</td>
<td>18.91</td>
</tr>
<tr>
<td>15,000</td>
<td>15,000</td>
<td>20.04</td>
<td>20.29</td>
<td>20.71</td>
</tr>
<tr>
<td>15,000</td>
<td>11,250</td>
<td>22.41</td>
<td>23.09</td>
<td>22.41</td>
</tr>
<tr>
<td>15,000</td>
<td>7,500</td>
<td>25.97</td>
<td>29.69</td>
<td>23.44</td>
</tr>
<tr>
<td>15,000</td>
<td>3750</td>
<td>26.79</td>
<td>40.17</td>
<td>20.63</td>
</tr>
<tr>
<td>15,000</td>
<td>750</td>
<td>27.21</td>
<td>45.09</td>
<td>19.89</td>
</tr>
<tr>
<td>10,000</td>
<td>10,000</td>
<td>21.33</td>
<td>20.35</td>
<td>23.34</td>
</tr>
<tr>
<td>10,000</td>
<td>7,500</td>
<td>24.14</td>
<td>24.05</td>
<td>25.95</td>
</tr>
<tr>
<td>10,000</td>
<td>5,000</td>
<td>27.26</td>
<td>29.98</td>
<td>25.89</td>
</tr>
<tr>
<td>10,000</td>
<td>2,500</td>
<td>27.53</td>
<td>40.00</td>
<td>22.03</td>
</tr>
<tr>
<td>5,000</td>
<td>5,000</td>
<td>21.77</td>
<td>20.38</td>
<td>28.09</td>
</tr>
<tr>
<td>5,000</td>
<td>3,750</td>
<td>24.03</td>
<td>24.18</td>
<td>29.79</td>
</tr>
<tr>
<td>5,000</td>
<td>2,500</td>
<td>27.52</td>
<td>30.42</td>
<td>28.50</td>
</tr>
<tr>
<td>5,000</td>
<td>1,250</td>
<td>27.49</td>
<td>37.56</td>
<td>24.55</td>
</tr>
</tbody>
</table>
OUTBOUND PARAMETER

<table>
<thead>
<tr>
<th>outbound</th>
<th>ws</th>
<th>ss</th>
<th>plagdet</th>
<th>recall</th>
<th>precision</th>
<th>granularity</th>
</tr>
</thead>
<tbody>
<tr>
<td>.20</td>
<td>20,000</td>
<td>20,000</td>
<td>19.92</td>
<td>21.17</td>
<td>18.84</td>
<td>1.00</td>
</tr>
<tr>
<td>.20</td>
<td>20,000</td>
<td>5,000</td>
<td>25.87</td>
<td>41.84</td>
<td>19.06</td>
<td>1.02</td>
</tr>
<tr>
<td>.30</td>
<td>20,000</td>
<td>5,000</td>
<td>25.66</td>
<td>36.60</td>
<td>20.09</td>
<td>1.01</td>
</tr>
<tr>
<td>.30</td>
<td>15,000</td>
<td>3,750</td>
<td>26.82</td>
<td>37.24</td>
<td>21.48</td>
<td>1.02</td>
</tr>
<tr>
<td>.35</td>
<td>15,000</td>
<td>3,750</td>
<td>25.68</td>
<td>30.01</td>
<td>22.91</td>
<td>1.02</td>
</tr>
<tr>
<td>.30</td>
<td>10,000</td>
<td>2,500</td>
<td>27.61</td>
<td>36.93</td>
<td>23.13</td>
<td>1.04</td>
</tr>
<tr>
<td>.20</td>
<td>10,000</td>
<td>2,500</td>
<td>27.29</td>
<td>42.25</td>
<td>21.17</td>
<td>1.04</td>
</tr>
</tbody>
</table>

- Controlled ratio of outliers detected
- Higher outbound pushed precision
- Lower outbound pushed recall (even more)
RESULTS

Training corpus (PAN 2010)
• Plagdet: 28.60
• Recall: 36.57
• Precision: 26.70
• Granularity: 1.11

Test corpus (PAN 2011-INTR)
• Plagdet: 16.79 (2nd place)
• Recall: 42.79 (!)
• Precision: 10.75 (?)
• Granularity: 1.03

Comparison
• ws = 5000, ss = 2500, n = 2500, outbound = .20
• Disappointing precision – dramatic drop
• Method does invariably great in recall
• Shorter documents in test?
REFERENCES