Supervised Classification of Twitter Accounts Based on Textual Content of Tweets

Fredrik Johansson
fredrik.johansson@foi.se

PAN @ CLEF 2019

September 10, 2019
Outline

- A security and intelligence perspective on bot and gender profiling
 - Motivation and examples
 - Our previous work (mostly metadata-based)
- Implemented two-step binary classification approach
 - Features and classifiers
 - Results
Information operations in social media

Social media used by e.g. state actors to carry out various types of information operations

- Bots: "Drown" hashtags with unrelated content, information spread (trending topics), manipulate reputation statistics...

- Trolls: increase tension and polarization in societies (NATO, migration, Brexit, gun control, etc.)

- Hi-jacked accounts: make use of existing accounts’ social network and reputation to reach out to large audience (e.g., hi-jacking of @AP)
Detection of Twitter bots

- Divert attention from protests by flooding hashtags: e.g., Syria, Mexico, Russia

- Amplification of messages: e.g., accounts depicting Hong Kong protesters as violent criminals

- Growing threat with improved neural models for text generation, such as GPT-2 and Grover

 - Increased automation of troll activities?
Tools for analyzing information operations on Twitter

- Visual analytics for identifying coordinated accounts

- NLP object patterns for detecting tweets of interest
 - E.g., "Lavrov and Putin propaganda machine are on overdrive today"

- Automatic classification of bots
 - E.g., inter-tweet content similarity, inter-tweet timing distributions, inter-tweet delay regularities, # hashtags, # mentions, # URLs
Gender profiling

In criminal investigations or intelligence work, profiling anonymous accounts can sometimes be of importance
- Example: Death threats sent to politicians to their home addresses (with related searches conducted from a certain IP address)
- Profiling gender or other characteristics can sometimes decrease number of likely senders
 - Use of function words, POS tags etc.
 - Does not seem to work very well for Twitter data!
High-level approach

- Two-step binary classification
 1. Bot or human?
 2. Male or female? (only if classified as human)
- Calculate aggregate statistics based on all tweets from account of interest
 - Signs of bots which are not visible on individual tweet level
 - E.g. inter-tweet similarity
Aggregate "metadata" statistics (bot classification)

Calculate max, min, avg, std for the following features:

```python
def calculateStats(df):
    print("Starting to calculate stats")
    df['str_len'] = df.content.str.len()
    df['nr_of_mentions'] = df.content.str.count("@")
    df['retweet'] = df.content.str.contains("RT ")
    df['link'] = df.content.str.contains("http")
    df['nr_upper'] = df.content.str.count(r'[A-Z]')
    df['nr_lower'] = df.content.str.count(r'[a-z]')
    df['content_shifted'] = df.groupby(["id"])['content'].shift(1)
    df['content_shifted'] = df["content_shifted"].replace(np.nan, '', regex=True)
    df['edit_distance'] = df.apply(get_text_dist, axis=1)
    return df
```

Damerau-Levenshtein used as edit distance metric on adjacent tweets.
Content features (bot classification)

Aim at simplicity/generalizability rather than optimizing dev-set performance

- Concatenate all tweets for current user
- Apply TfidfVectorizer in scikit-learn
 - analyzer = "word", lowercase = True
 - ngram_range = (1,2), max_features = 800
 - min_df = 4, binary = True (TF-part 0 or 1)
 - use_idf = True, smooth_idf = True

- LSTMs or Transformers with pre-trained word embeddings would be more powerful, avoided due to TIRA performance and need for scaling to large datasets in our tools
Bot classifier

Trained separate classifiers for TF-IDF and the "metadata" features, due to relative sparseness of TF-IDF vector
1. Logistic regression classifier on the TF-IDF features
 - Regularization: $C=1.0$
2. Add output class probabilities from log. reg. as additional feature
3. Random Forest classifier on statistical features + log. reg. output
 - $n_{estimators}=500$
 - $max_{features}="auto"$
 - $min_{samples_{leaf}}=1$

Grid search was used on training set to select classifiers with suitable parameter settings
Gender classifier

Ended up with extremely simple gender classifier
 - Logistic regression classifier on based on most common TF-IDF features in training data
 - Regularization: C=1.0
 - TF-IDF
 - analyzer = "word", lowercase = True
 - ngram_range = (1,1), max_features = 300
 - min_df = 10, binary = False
 - use_idf = True, smooth_idf = True
 - Experimented with the statistical features, POS tags etc. but did not increase performance
<table>
<thead>
<tr>
<th>Task</th>
<th>Lang</th>
<th>Dev set</th>
<th>TIRA testset2</th>
<th>Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bots profiling</td>
<td>en</td>
<td>0.948</td>
<td>0.960</td>
<td>Top-1</td>
</tr>
<tr>
<td>Bots profiling</td>
<td>es</td>
<td>0.892</td>
<td>0.882</td>
<td>Top-15</td>
</tr>
<tr>
<td>Gender profiling</td>
<td>en</td>
<td>0.752</td>
<td>0.838</td>
<td>Top-5</td>
</tr>
<tr>
<td>Gender profiling</td>
<td>es</td>
<td>0.648</td>
<td>0.728</td>
<td>Top-20</td>
</tr>
</tbody>
</table>

* 55 participating teams in total

Consistently underperform on Spanish compared to English. Used default string tokenizer in scikit-learn, probably a terrible idea...
Questions?

Thanks for listening!

fredrik.johansson@foi.se