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ABSTRACT 
In this paper, we describe the system developed by Autonomous 
University of the State of Mexico (in Spanish, UAEM) for the 
detection of source code re-use (SOCO) task of FIRE 2014. The 
aim of the SOCO task is to detect the most similar code pairs 
between a large source code collection in java and c languages. 
Our method is divided in for phases: preprocessing, similarity 
measure, ranking and getting the decision. One way to measure 
the similarity between a pair of codes is to use the length of the 
Longest Common Substring (LCS). However, beside the LCS 
there is another important set of longest common substrings 
(shorter than LCS) that are not taking into account. Our 
hypothesis is that if we use all the longest common substrings 
(LCSs) is possible to improve the detection of similarity between 
two codes. The second hypothesis is that a re-use case not only 
depends on the value of a measure but also depends on the 
similarity of other codes. For this, we get other parameters using 
the LCSs measure with respect to other codes. For taking a re-use 
case decision, we obtain some rules using the training corpus of 
SOCO.    

Categories and Subject Descriptors 
H.3 [Information Storage and Retrieval]: H.3.1 Content 
Analysis and Indexing; H.3.3 Information Search and Retrieval; 
H.3.4 Systems and Software 

General Terms 
Algorithms, Measurement, Performance, Experimentation, 
Languages 

Keywords 
Source Code Reuse, Longest Common Substrings, Similar Codes, 
Java Code Reuse, C Code Reuse. 

 

1. INTRODUCTION 
 

Even though is common to find a lot of web pages showing 
source codes in different languages, the source code is the result 
of an intellectual effort, for such reason, it is protected by 
copyright laws. Normally, the source code in the WEB is 
presented in short fragments with tutorial proposes. However, re-
using source code of works brings economic problems for the 
author and legal problems for whom make the act. Some 
automatic tools have been developed to assist with the 
problematic of the re-use detection of source code. These tools 
can be classified in intrinsic or extrinsic tools. The intrinsic tools 

search re-uses cases in a given collection of source codes. In this 
case, every code in the collection is considering suspects. In the 
extrinsic tools, the problem consists of given a suspect to find the 
re-use case in other collections, like the Web. 

JPLAG and MOSS are examples of free tools. JPLAG [1] was 
developed by Guido Malpohl in 1996 which supports Java, C#, 
C++, Scheme and natural language text. JPLAG uses a variation 
of the Karp-Rabin comparison algorithm developed by Wise [2]. 
First, JPLAG converts the source code into strings of token 
employing a parser. The parser brings more semantic information 
and depends on the source language. MOSS [3] (Measure Of 
Software Similarity) was developed by Alex Aiken in 1994. 
MOSS works with different languages: C, C++, Java, Pascal, Ada, 
Lisp and Scheme. MOSS is based on getting fingerprints which 
identifying a source code in particular way. According to the Web 
page of MOOS the ideas of its algorithm can be found in [7]. The 
idea is that the more common fingerprints exist between a pair of 
source codes, the more similar they are. Fingerprints are a small 
subset of all the n-grams (substrings of n characters) that exists in 
a source code. The fingerprint is form with a unique value that 
represents an n-gram (normally, a hash functions is applied).  

Sherlock and PMD are open-source free tools. Sherlock was 
developed by the department of Computational Science of the 
University of Warwick. Sherlock works with source codes and 
natural language texts. Also, PDM uses the string-matching 
comparison algorithm of Karp-Rabin. PDM supports Java, JSP, 
C, C++, Fortran and PHP. 

CodeMatch is a commercial tool that supports the languages: 
BASIC, C, C++, C#, Delphi, Flash, Java, etc. CodeMatch is based 
on the combinations of five algorithms: Source Line Matching, 
Comment Line Matching, Word Matching, Partial Word 
Matching, and Semantic Sequence Matching. For processing a 
source code, first CodeMatch separates comments, identifiers 
(name of variables, names of constants, names of functions, etc.) 
and functional code. Word Matching algorithm obtains for each 
code a substring of words (eliminating reserved words) that allow 
counting the number of common words in this sequence. Unlike 
Word Matching, for Partial Word Matching is not necessary that 
the complete words matching, it could be partial. Source Line 
Matching compares the source lines (excluding comments) of the 
source code pair. On the contrary, Comment Line Matching 
compares the lines of comments excluding the lines with 
functional code. Semantic Sequence Matching compares the lines 
of codes using the first word (excluding comments) of the pair of 
source codes. Finally, a single score is given for the similarity of 
the source code pair. 

The state of the art in the s research deals with the detection of 
source-code re-use across programming languages [6].  



2. Proposed system 
Our system (UAEM) used for the detection of source code reuse 
is divided into four phases.  

2.1 Preprocessing phase 
In the first phase, only the lexical items (like {,},(,),+,*,;.etc.) of 
each source code are separated with a whitespace and more than 
one whitespace is removed. The result of this phase is a string of 
tokens of the source code. This phase depends on the input 
language, but for C and Java is almost the same. Even thought, we 
test some options like remove comments or identifiers, the 
evaluation in the training corpus decreases. 

2.2 Similarity measure phase 
In the second phase, for each source code given as a string, the 
similarity measure with respect to the other source codes is 
obtained. The sum of the different lengths of the longest common 
substrings between the two source codes (normalized to the length 
of the longest code) is used as the similarity measure. For this 
phase, we used the algorithm in [4]. 

2.3 Ranking phase 
In the third phase, a set of parameters that allow later the 
identification of cases of re-use is obtained using comparisons 
done in the previous phase. The parameters obtained are: the 
value of the DISTANCE (1 - similarity), the RANKING of the 
distance (rank order of the most similar), the GAP that exists with 
the next closest code (it is only calculated for the first 10 closest 
codes) and, using the maximum gap between the 10 most closest 
codes, the codes that are (B)efore or (A)fter the maximum gap 
(RELATIVE DIFFERENCE) are labeled. The result of the third 
phase is a matrix where each row represents a comparison of a 
source code with other codes (columns) and each cell represents a 
pair of source codes in both directions. 

2.4 Reuse decision phase 
For taking the decision, a source code pair X↔Y will be a reuse 
case, if there is evidence of reuse in both directions, it means, 
X→Y and Y→X. A reuse case exists when the DISTANCE is less 
than 0.45 or the GAP is greater than 0.14, but also it is important 
that one of the additional conditions is achieved. The first 
condition is that the RANKING must be, at least, in the second 
position and, the second condition, that the label of the 
RELATIVE DIFFERENCE must be B. The first run for C and 
Java languages were processed with above conditions. However, 
in some cases the evidence in one direction was very high and in 
the other direction was almost reliable, but according to the 
training corpus in Java and C, in most of the cases this pair was a 
code reuse case. In the second run, if there were not high evidence 
of reuse in one direction, then the pair can be considered as reuse 
case whether at least one of the both codes has the RANKING of 
1 and the RELATIVE DIFFERENCE of B and the GAP greater 
than 0.1.  

3. Training experiments 
The training corpus consists of 259 source codes in Java and 79 
sources codes in C. Relevant judgments in Java has 84 pairs and 
in C has 26 pairs. In table 1 is showed the results of our system 
with the training corpus for C and Java. In the first run with Java 
the system gets a better recall than precision, and in the second 
run the precision is better. However, with C language the system 
obtains the same precision, the difference was in the recall. Most 

of the rules were tuning with Java corpus since more re-use cases 
exists in the relevant judgments. In this sense, we think that the 
results in C are worse since there are only 26 pairs for training. 

Table 1. Results with training corpus according to our 
evaluation. 

Corpus-Run Precision Recall F-measure 

Java-Run1 0.78 0.83 0.80 

Java-Run2 0.85 0.80 0.83 

C-Run1 0.80 0.58 0.67 

C-Run2 0.80 0.63 0.71 
 

4. Testing experiments 
We were surprised when the test corpus was delivered, it was 
bigger than we expected. The Java corpus has 12,080 files divided 
in 6 scenarios. In the case of C corpus, it has 19,895 files divided 
in 6 scenarios, too. Table 2 shows the distribution of the corpus 
according to SOCO scenarios. 
 
 Table 2. Distribution of test corpus according to the scenario. 

Scenario Java C 

A1 3,241 5,408 

A2 3,093 5,195 

B1 3,268 4,939 

B2 2,266 3,873 

C1 124 335 

C2 88 145 
 
At the beginning, the system was not optimized for running with 
bigger collections. The time estimated for processing the whole 
corpus was of 3 months, unacceptable for SOCO time 
competition. After a reprograming the system was possible to 
process the collections in one day using a computer with CPU 
Xenon with 6 cores and 32 GB in RAM.   
Since we did not know how the evaluation will be done, it could 
be done: by scenario, by language or by runs; we decide to do the 
combination of 2 runs to use 3 options that we are able to submit. 
These is the explanation of why run 2 and run 3 are the same in 
Java, and why run 1 and run 2 are the same in C. The results of 
our system (UAEM) with the test corpus for C are showed in 
Table 3. The f-measure results for UAEM-run1 and UAEM-run2 
(actually, it correspond to the system tuning to C-Run1 in training 
phase) were better than UAEM-run3 (it corresponds to C-Run2 in 
training phase). However, in the training phase the system tuning 
to C-Run1 was worse in the recall and the precision was better 
than recall. We think this variation is possible since the training 
corpus is very small compared with the test corpus. 
 

Table 3. Results of the systems for C according to the first 
SOCO evaluation. 

Rank Team-Run Precision Recall F-measure 
1 UAEM-run1 0.306 0.500 0.380 



2 UAEM-run2 0.306 0.500 0.380 
3 UAEM-run3 0.260 0.500 0.342 
# Baseline-1 0.400 0.069 0.117 
# Baseline-2 0.040 0.280 0.060 
4 UAM-C-run1 0.007 0.494 0.013 
5 UAM-C-run3 0.007 0.493 0.013 
6 UAM-C-run2 0.005 0.444 0.010 

 
 
The results of our system (UAEM) with the test corpus for Java 
are showed in Table 4. The evaluation for UAEM-run2 and 
UAEM-run3 (actually, it corresponds to the system tuning to 
JAVA-Run2 in the training phase) were better than UAEM-run1 
(it corresponds to JAVA-Run1). As in previous evaluation, the 
system has a different behavior with respect to the training phase. 
Nevertheless, the results in Java were better than in C.  
 

Table 4. Results of the systems for java according to first 
SOCO evaluation. 

Rank Team-Run Precision Recall F-
measure 

1 UAEM-run2 0.641 0.969 0.771 
2 UAEM-run3 0.641 0.969 0.771 
3 UAEM-run1 0.759 0.472 0.582 
4 UAM-C-run1 0.633 0.435 0.515 
5 DCU-run3 0.775 0.360 0.492 
6 DCU-run2 0.777 0.350 0.482 
7 DCU-run1 0.658 0.364 0.468 
8 UAM-C-run3 0.926 0.311 0.465 
# Baseline-2 0.464 0.288 0.356 
# Baseline-1 0.617 0.080 0.141 
9 UAM-C-run2 0.029 0.343 0.054 

 
 
The configuration of Baseline-1 corresponds to JPLAG program 
with the default parameters, and the configuration of Baseline-2 
consists of a character 3-gram model weighted using term 
frequency and cosine measure to compute the similarity. This 
baseline considers as re-used cases all source code pairs that 
surpass a similarity threshold of 0.9. An overview of the SOCO 
Track can be found in [5] 

4.1 Second SOCO evaluation 
The second evaluation by SOCO eliminates our third run since 
was a combination of the runs 1 and 2. Results for C are showed 
in table 5 and results for java in table 6.  
 

Table 5. Results of the systems for C according to the second 
SOCO evaluation. 

Rank Team-Run Precision Recall F-measure 
1 UAEM-run1 0.282 0.100 0.440 
2 UAEM-run2 0.240 0.100 0.387 
# Baseline-2 0.258 0.345 0.295 
# Baseline-1 0.350 0.130 0.190 
4 UAM-C-run1 0.006 1.000 0.013 
5 UAM-C-run3 0.006 0.997 0.013 
6 UAM-C-run2 0.005 0.950 0.010 

 
According to the second evaluation by SOCO, our system retains 
the top position and the f-measure was increased, but the UAM-C 
team obtained the same f-measure. 
 

Table 6. Results of the systems for java according to second 
SOCO evaluation. 

Rank Team-Run Precision Recall F-
measure 

1 UAM-C-run3 0.691 0.968 0.807 
2 DCU-run2 0.530 0.995 0.692 
3 DCU-run3 0.515 1.000 0.680 
4 DCU-run1 0.432 0.995 0.602 
# baseline 2 0.457 0.712 0.556 
5 UAEM-run1 0.385 1.000 0.556 
6 UAM-C-run1 0.349 1.000 0.517 
# baseline 1 0.542 0.293 0.380 
7 UAEM-run2 0.158 1.000 0.273 
8 UAM-C-run2 0.019 0.928 0.037 

 
According to the second evaluation in java, our system obtains the   
fifth position with run1 and the seventh position with run 2.  

5. Conclusions and future work 
In this paper, a new system for detecting re-use of source code is 
described. The proposed system works in four phases. The 
preprocessing phase is very interesting since it does not require 
sophisticated processes or dictionaries, making the execution of 
this phase very fast. It is worth noting that all phases of our 
system work with words, making the process faster than when 
working with characters. The second phase introduces a new 
measure based on the different lengths of longest common 
substrings between the pairs of source codes which outperform 
LCS. Third phase presents a new way for considering other 
parameters derived from the LCSs measure. These parameters 
allow proposing some rules for catch some groups of re-use cases. 
According to first SOCO evaluation, our system outperforms 
other systems in both cases. Even thought, the evaluation of Java 
reach the best f-measure score, the results in C are also relevant, 
since was the unique system that surpass both baselines in the first 
evaluation.  



In both second evaluations is interesting to observe that all of the 
systems obtains excellent recalls between 0.928 and 1.000. 
Therefore, as a future work we must concentrate our efforts in 
precision. Also, as future work, we think the rules for C can be 
improved considering some more re-use cases.    
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